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Abstract. In producing the next Earth Gravity 
Model (EGM), one task is to compute the spherical 
harmonic spectrum of gravity anomalies for which a 
global grid of band-limited area-means has been 
computed on the ellipsoid. For EGM96, a solid 
spherical harmonic formulation was used to com-
pute the spectrum to degree 359, directly from 
30′×30′ gridded anomalies using block-diagonal 
least squares [BDLS]. For the new EGM, an identi-
cal approach would use 5′×5′ gridded anomalies 
and BDLS to degree 2159. In the latter case, this 
BDLS approach exhibits minor instabilities in re-
covering zonal harmonics. Contrary to expectation, 
these instabilities result from converting gridded 
equiangular geodetic latitudes to non-equiangular 
geocentric latitudes, as this increases the non-
orthogonality of the discretized Legendre poly-
nomials and so causes the recovered zonal coeffici-
ents to be almost totally correlated. An alternative is 
to first compute the ellipsoidal harmonic spectrum 
to degree 2159, since the non-equiangular spacing 
of the reduced latitudes does not correlate the re-
covered zonal ellipsoidal harmonics. Jekeli’s (1988) 
transformation is then used to transform the ellip-
soidal harmonic spectrum to spherical harmonics. 
Importantly, the final spherical spectrum must be 
truncated above degree 2159, otherwise the omis-
sion errors at polar latitudes become greatly ampli-
fied when continued down to the ellipsoid. 
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1 Introduction 
 
The National Geospatial-Intelligence Agency 
[NGA] is currently sponsoring the development of 
an Earth Gravitational Model [EGM], complete to 
(at least) spherical harmonic degree and order 2160. 
This model is intended to replace EGM96 (Lemoine 

et al., 1998), which was complete to degree and 
order 360. The development of EGM96 included 
the analysis of a global grid of 30′×30′ gravity 
anomaly area-means, equiangular in geodetic lati-
tude. This process is described in detail by Pavlis 
in (Lemoine et al., 1998, Chap. 8). In brief, starting 
from 30′×30′ area-mean values of Molodensky 
free-air gravity anomalies defined on the topogra-
phy, one applies ellipsoidal corrections, downward 
continuation, and a spectral filtering technique in 
order to reduce these anomalies, as closely as pos-

sible, to quantities !gij
e

 that are band-limited to 
degree 359, refer to the surface of the ellipsoid, and 
are related to the potential coefficients by: 
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with the area element: 
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and the integrated surface spherical harmonic: 
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r
i

e  is geocentric distance, !
i
 co-latitude, and ! j  

longitude, associated with a cell on the i-th “row” 
and j-th “column” of a global equiangular grid. N  
denotes the maximum degree (n)  and order (m) . 
C
nm

 are fully-normalized coefficients of the dis-

turbing potential and Pn m  are fully-normalized 
Associated Legendre functions. 

� 

GM is the geocen-
tric gravitational constant and a  is a scale factor 
associated with the coefficients C

nm
 (usually nu-

merically equal to the semi-major axis of the refer-
ence ellipsoid). Specific properties of the reference 



 

surface and the geometry of the data grid, as well as 
the error properties of the data, cause the normal 
matrix resulting from the ensemble of observation 
equations (1) to be of block-diagonal nature 
(Colombo, 1981; Pavlis, 1988). This aspect was 
exploited during the development of EGM96, where 
a Block-Diagonal Least-Squares adjustment tech-
nique [BDLS] was used to estimate the portion of 
the model from degree 71 to degree and order 359, 
from the combination of a satellite-only model with 
terrestrial data. Pavlis in (Lemoine et al., 1998, 
Sect. 8.2.4) describes in detail this adjustment. The 
following discussion focuses only on the analysis of 
the terrestrial data, using the solid spherical har-
monic formulation of equation (1). Here, we restrict 
ourselves to a “Type 1” block-diagonal structure 
(ibid., Sect. 8.2.2), and to gravity anomalies with 
equal weights, since this is sufficient within the 
context of the present study.  
This Type 1 block-diagonal structure implies: 
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for the normal equation element N[ ]
CnmCrs

 corre-

sponding to unknowns C
nm

 and C
rs

. Pavlis et al. 
(1996) had verified that BDLS estimators based on 
equation (1) can recover exactly (within the com-
puter’s numerical noise) a set of coefficients, from 
synthetic (“true”), noiseless 30′×30′ data, provided 
these data are band-limited, and the Nyquist degree 
(359) is not exceeded. This is re-confirmed here, 
with Figure 1 showing that the spectrum of the dif-
ference coefficients (“true” - recovered) is within 
the numerical noise of the computer’s arithmetic. 
 

 
 
Fig. 1 Spherical harmonic gravity anomaly degree variance 
and BDLS recovery error (30′×30′ area-mean values on the 
ellipsoid, N=359). 
 
 

2 The 5′×5′  Data and Degree 2159 Case 
 
For the new EGM, a corresponding application of 
the same Type 1 BDLS technique would use 5′×5′ 

!gij
e

 and form normal equations based on observa-
tion equation (1) with N=2159. However, the im-
plementation of this technique within a “closure” 

experiment using synthetic (“true”) 5′×5′ !gij
e

 
yielded unexpected results, as shown in Figure 2 
(the counterpart of Figure 1, for the 5′×5′ data and 
N=2159 scenario). From this figure, it is evident 
that the technique is failing to recover the zonal 
coefficients, whilst the recovery of the non-zonal 
coefficients appears to be satisfactory (with the 
possible exception of the near-Nyquist degrees). 
 

 
 
Fig. 2 Spherical harmonic gravity anomaly degree variance 
and BDLS recovery error (5′×5′ area-mean values on the 
ellipsoid, N=2159). 
 
Figure 3 shows that the residual gravity anomalies 
are largest near the poles. 
 

 
 
Fig. 3 RMS (per latitude band) residual gravity anomaly 
(5′×5′ area-mean values on the ellipsoid, N=2159). 



 

Inspection of the normal matrix reveals no reason 
why the BDLS should fail in this way. As expected, 
both of the zonal blocks (corresponding to odd and 
even degrees) are diagonally-dominant. However, 
Figures 4 and 5 show the zonal blocks of the inverse 
of the normal equations, normalized such that they 
represent correlations. For the N=359 case, the re-
covered zonal coefficients are mostly uncorrelated 
(Figure 4). In stark contrast, for the N=2159 case, 
almost all of the zonal coefficients are almost fully 
correlated (Figure 5). This suggests the existence of 
strong dependencies amongst the discretized zonal 
harmonics within the design matrix, which prevent 
the proper recovery of zonal harmonic coefficients. 
 

 
 

Fig. 4 Correlation matrices for even (left) and odd (right) 
zonal coefficients (30′×30′ area-mean values on the ellipsoid, 
N=359). 
 

 
 

Fig. 5 Correlation matrices for even (left) and odd (right) 
zonal coefficients (5′×5′ area-mean values on the ellipsoid, 
N=2159). 

 
3 High-Degree Radial Terms  
 
Unlike surface spherical harmonics, the solid spher-
ical harmonics used in equation (1) contain radial 

� 

(a / r)n  terms, which, on the surface of the ellip-
soid, are unity at the equator and increase mono-
tonically towards the poles. For N=359 the value of 

� 

(a / r)359  increases to only ~3.3 at the poles. For 
N=2159 the value of 

� 

(a / r)2159  increases to ~1409 
at the poles. Legendre polynomials 

� 

(P n0) , unlike 
tesseral and sectorial 

� 

P nm , contain no 

� 

sin
m
!  terms, 

and so do not taper to zero at the poles. This means, 
for example, that 

� 

(a / r)2159 (P 2159,0)  has an ampli-
tude that is 4 to 5 orders of magnitude larger at the 
poles than near the equator. 

To determine if this extreme variability in the am-
plitude of the high-degree Legendre polynomials 
was increasing the non-orthogonality in the disre-
tised zonal harmonics, the 5′×5′, N=2159 test clos-
ure was repeated for mean gravity anomalies on the 
surface of the bounding sphere 

� 

(r = a) , instead of 
on the ellipsoid. For this closure, the 

� 

(a / r)n  terms 
are all equal to one, which makes this test an exer-
cise in recovering surface spherical harmonics. As 
can be seen in Figures 6 and 7, this has removed 
much of the error in the recovered zonal coeffici-
ents, but did not completely eliminate the extreme 
correlations in the zonal harmonic coefficients. 
 

Fig. 6 Spherical harmonic gravity anomaly degree variance 
and BDLS recovery error (5′×5′ area-mean values on the 
equatorial bounding sphere r=a, N=2159).  
 
 

 
 

Fig. 7 Correlation matrices for even (left) and odd (right) 
zonal coefficients (5′×5′ area-mean values on the equatorial 
bounding sphere r=a, N=2159). 

 
4 Equiangular Geodetic Latitudes  
 
In fact, we must turn to geometrical geodesy to 
completely remove the correlations in the recov-
ered zonal coefficients. As is common in physical 
geodesy, the gravity anomalies were averaged over 
geographic blocks that were equiangular in terms 
of geodetic latitude. Of course, for spherical har-
monic analysis, this equal spacing in geodetic lati-
tude converts to non-equal spacing in the geocen-
tric latitude that is required as argument for the 



 

evaluation of the discretized 

� 

P nm . Surprisingly, it is 
this specific latitudinal variation of the geocentric 
angle contained within each block, although quite 
smooth and regular, that causes near complete de-
pendencies between the Legendre polynomials 

� 

(P n0)  for the (5′×5′, N=2159) case, but not for the 
(30′×30′, N=359) case. This was verified by repeat-
ing, on the surface of the ellipsoid, the (5′×5′, 
N=2159) test closure for anomalies averaged over 
geographical blocks for which the geocentric lati-
tudinal spacing is equiangular. Figure 8 shows the 
gravity anomaly degree variance for the actual error 
in the recovered coefficients. Figure 9 shows the 
correlations in the recovered zonal harmonic co-
efficients. It is clear that modifying the latitudinal 
block spacing to geocentric latitude circumvents all 
the difficulties experienced before in the recovery 
of spherical harmonic coefficients. 
 

 
 
Fig. 8 Spherical harmonic gravity anomaly degree variance 
and BDLS recovery error (5′×5′ area-mean values on the 
ellipsoid, equiangular geocentric latitude grid, N=2159).  
 

 
 
Fig. 9 Correlation matrices for even (left) and odd (right) 
zonal coefficients (5′×5′ area-mean values on the ellipsoid, 
equiangular geocentric latitude grid, N=2159).  
 
It is certainly possible to estimate gravity anomaly 
area-means on a 5′×5′ grid that is equiangular in 
geocentric latitude. It is also possible (and most 
likely preferable) to adhere to the usual practice of 
defining the area-mean gravity anomalies as equi-
angular in geodetic latitude, and to seek another 
way of resolving the zonal coefficient dependen-

cies. Conceivably this may be accomplished using 
an a priori constraint that could “break down” the 
correlations amongst zonal spherical harmonic 
coefficients. Further scrutiny of correlation matri-
ces indicated that high correlations were effectively 
eliminated when the expansion was restricted to 
maximum degree 2153 or so (using 5′×5′ data). 
This indicates that an a priori constraint would 
probably be necessary only for the higher degree 
zonal coefficients near the Nyquist degree. How-
ever, this approach was not tested, since a more 
appealing alternative is available. 

 
5 Ellipsoidal Harmonics 
 
The preferable alternative involves the implemen-
tation of surface ellipsoidal harmonic analysis, 
according to: 
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rather than the implementation of solid spherical 
harmonic analysis, which is the basis for equation 
(1). The terms in (5) are defined as in (2) and (3), 
with the geocentric latitudes being replaced with 
reduced latitudes.  This approach produces the el-
lipsoidal harmonic spectrum of the harmonic quan-

tity ri
e
! "g

ij

e

. The corresponding spherical har-

monic spectrum of this quantity, and hence !gij
e

, 
can be obtained afterwards using Jekeli’s (1988) 
transformation.  Care should be exercised when 
comparing ellipsoidal and spherical spectra trun-
cated by degree, since Jekeli’s (1988) transforma-
tion preserves the maximum order, but not the 
maximum degree.  
The ellipsoidal harmonic formulation was verified 
using a test closure experiment whereby a “true” 
ellipsoidal harmonic spectrum of ri

e
! "g

ij

e

, com-

plete to N=2159, was used to create synthetic 5′×5′ 
data on the surface of the ellipsoid. Figure 10 
shows the gravity anomaly degree variance for the 
actual error in the recovered ellipsoidal harmonic 
spectrum. Figure 11 shows the correlation matrices 
for the zonal ellipsoidal harmonic coefficients. We 
observe that the conversion of equiangular geodetic 
latitudes to non-equiangular reduced latitudes dras-
tically reduced the correlation between zonal ellip-
soidal harmonics. Thus the ellipsoidal harmonics 
formulation offers a viable alternative to the use of 
a priori constraints, at least for 5′×5′ data and up to 
degree and order 2159. 



 

 
 
Fig. 10 Ellipsoidal harmonic gravity anomaly degree vari-
ance and BDLS recovery error (5′×5′ area-mean values on 
the ellipsoid, equiangular geodetic latitude grid, N=2159). 
 

 
 
Fig. 11 Correlation matrices for even (left) and odd (right) 
ellipsoidal harmonic zonal coefficients (5′×5′ area-mean 
values on the ellipsoid, equiangular geodetic latitude grid, 
N=2159).  
 
Jekeli’s (1988) transformation implicitly upward 
continues the ellipsoidal spectrum of a harmonic 
function defined on the ellipsoid, to the correspond-
ing bounding sphere 

� 

r = a , and it is on this sphere 
that the solid ellipsoidal harmonics are rigorously 
transformed to solid spherical harmonics. As Jekeli 
(1988, page 112) points out, Figure 12 illustrates 
that a function band-limited to degree 2159 in its 
ellipsoidal harmonic spectrum will contain power, 
albeit rapidly decreasing with increasing degree, in 
its spherical harmonic spectrum beyond degree 
2159 (and vice versa). 
 

 
 
Fig. 12 Spherical harmonic gravity anomaly degree variance 
obtained using Jekeli’s transformation applied on an ellipsoi-
dal spectrum band-limited to N=2159.  

If the spherical harmonics computed using Jekeli’s 
transformation are truncated at degree 2159, then 
the omission error with respect to the original 
N=2159 ellipsoidal harmonic spectrum at the 
bounding sphere will not be significant (Figure 13). 
 

 
 
Fig. 13 Gravity anomaly omission error per latitude band at 
the bounding sphere (r=a), comprising spherical harmonics 
above degree 2159; i.e., the discrepancy between ellipsoidal 
harmonic field to degree 2159 and corresponding spherical 
harmonic field truncated also at degree 2159.  
 
However, when this same degree-2159 truncated 
spherical harmonic field is downward continued to 
the ellipsoid, the high-degree 

� 

(a / r)
n  terms greatly 

amplify the omitted harmonics towards the poles, 
thereby yielding an omission error on the ellipsoid 
of over 70 mGal in some points (see Figure 14). 
 

 
 
Fig. 14 Gravity anomaly omission error per latitude band, 
downward continued to the ellipsoid, comprising spherical 
harmonics above degree 2159.  
 
If the transformed solid spherical harmonic spec-
trum is truncated at (say) degree 2190, then the 
omission error on the ellipsoid is everywhere less 
than 0.0005 mGal (see Figure 15). 



 

 
 
Fig. 15 Gravity anomaly omission error per latitude band, 
downward continued to the ellipsoid, comprising spherical 
harmonics above degree 2190.  
 
This amplification of the omitted harmonics above 
the maximum degree of the ellipsoidal expansion 
has implications for the spectral filtering of the ori-
ginal data (which aims to produce their 
band-limited counterparts). In EGM96, the original 
30′×30′ gravity anomalies were band-limited by 
first estimating their ellipsoidal spectrum to N=460. 
This was then converted to the corresponding spher-
ical spectrum, and then these spherical harmonics 
above N=359 were removed from the original data. 
The N=359 band-limited data was then analysed 
using the solid spherical harmonic formulation of 
equation (1).  
This approach worked for the (30′×30′, N=359) case 
of EGM96, since the ‘mismatch’ between spherical 
and ellipsoidal representations, both to N=359, was 
not noticeably large at polar latitudes. However, as 
demonstrated in Figure 14, this technique cannot be 
used for the present (5′×5′, N=2159) case in the 
same way, since the omitted spherical harmonics 
above N=2159 are greatly amplified near the poles. 
Instead, performing the band-limiting and the “ter-
restrial” coefficient estimation, all in terms of sur-
face ellipsoidal harmonics as formulated in equation 
(5), circumvents all these issues. Transforming the 
satellite-only spectrum from spherical to ellipsoidal 
harmonics also allows the combination solution 
with the satellite-only model to be performed in 
ellipsoidal harmonics. Spherical harmonic coeffici-
ents need be computed only for the final combined 
model, exactly as it was done for the PGM2004A 
solution developed by Pavlis et al. (2005). 
 
6 Summary 
 
In EGM96 spherical harmonic coefficients to de-
gree 359 were computed from 30′×30′ area-mean 

anomalies using a solid spherical harmonic formu-
lation. For a new EGM, based on 5′×5′ mean an-
omalies, there are two reasons why this technique 
cannot be extended directly to degree 2159. First, 
the conversion of 5′ equiangular geodetic latitudes 
to non-equiangular geocentric latitudes results in a 
near-full correlation of the recovered zonal har-
monic coefficients. Second, using ellipsoidal har-
monics and Jekeli’s transformation to band-limit 
the 5′×5′ anomalies to spherical harmonic degree 
2159 can produce a truncated field that does not 
model the input data adequately near the poles. 
Both of these problems can be avoided by first 
band-limiting the 5′×5′ mean anomalies to degree 
2159 in the ellipsoidal harmonic spectrum, and 
then by estimating the surface ellipsoidal harmonic 
coefficients to the same degree via block-diagonal 
least-squares. After combination with a properly 
transformed satellite-only model, the final (com-
bined) ellipsoidal harmonic spectrum can be con-
verted to the corresponding spherical spectrum 
using Jekeli’s transformation. This spherical spec-
trum cannot be truncated at degree 2159, since the 
effects of the omitted spherical harmonics can be 
amplified to over 70 mGal or so near the poles 
when downward continued to the ellipsoid. Simply 
extending the spherical harmonic spectrum to de-
gree 2190 reduces this error to less than 0.5 µGal. 
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